ECF amendments to the Commission’s proposal for revised TEN-T guidelines

February 2022

Ed Lancaster, Director – EuroVelo: e.lancaster@ecf.com
Aleksander Buczyński, Policy Officer – Infrastructure: a.buczynski@ecf.com

Key points

The proposal for a revised Trans-European Transport Network (TEN-T) regulation by the European Commission, published on 14 December 2021 as part of the “Efficient and Green Mobility” package, represents a step forward for cycling in urban areas, but also some missed opportunities.

The European Cyclists’ Federation (ECF) welcomes the definition of “active modes” and the requirement for urban nodes to adopt Sustainable Urban Mobility Plans. However, while big cities are important, they represent only 30% of the EU population. There is a huge potential for cycling in smaller towns (in connection with trains for longer trips), while 42% of all cycling fatalities happen outside urban areas.

ECF has prepared a detailed set of amendments, with the key points being:

1. **Integrating EuroVelo, the European cycle route network, alongside the other modes.** It would significantly contribute towards the EU meeting its ambitious climate targets but also symbolise that, after nearly three decades, the EU’s flagship transport policy is being updated to reflect the new approaches needed to address the current challenges. EuroVelo covers 90,000 km of which 60% are ready to cycle. Dedicated signing can already be found in 24 countries. The network needs coordination on the national and European level to ensure its continuing development and the TEN-T is the EU policy area best placed to provide that support [new articles 40a-40c (amendment to article 5(1) as a backup option)].

2. **Addressing the barrier effect of TEN-T infrastructure.** Many TEN-T roads, rail lines or inland waterways form a prohibitive barrier to cycling, forcing cyclists to take long detours or to cycle on unsafe roads, because bridges over (or tunnels under) them have not been equipped with cycling infrastructure. The Commission’s proposal includes passages about “ensuring the continuity and accessibility of pedestrian and cycling paths” [article 19(f) and 31(b)], but only as additional priorities for new road and rail projects, and applying only to pre-existing dedicated infrastructure. At the same time, the new requirement to upgrade all TEN-T roads to a para-motorway standard [article 29(2)(a)] will greatly increase the barrier effect. We propose to address the barrier problem systematically by introducing a requirement to ensure sufficient density of safe crossings. “Sufficient density” can be expressed either in
relation to number of crossings available for cars, or in terms of desired cycle network mesh density [new points in articles 12(1), 15(2), 21 and 29(2)].

3. **Creating new cycling connections within TEN-T projects.** TEN-T infrastructure can provide an attractive, direct, and safe corridor for a cycle route. For example, cycle highway projects alongside railways (including high-speed lines) demonstrated a benefit to cost ratio of up to 14:1. The investment is most efficient if integrated from the start in a TEN-T project – it becomes more expensive, complicated and disruptive to make the adaptations as an afterthought. Exploiting the opportunity to integrate cycling infrastructure alongside TEN-T projects should be at least mentioned in the additional priorities. [new points in articles 19, 23 and 31]. For TEN-T roads without a safe alternative for cyclists, it should be a requirement [new points in 29(1) and 29(2)].

4. **Fleshing out the section on urban nodes.** The requirements towards the urban nodes are mostly limited to planning and reporting, in contrast to more specific and technical sections 1-6 of the same chapter. To alleviate the congestions on the TEN-T network and truly enable multimodality, urban nodes need coherent cycle networks, including cycle highways connecting suburbs with centres [new points in article 40, or (as a backup option) new points in Annex V.]

More than 750,000 cyclists crossed the Polish-German border on EuroVelo 10 along the Baltic coast in 2019 - nearly as many as cars at the nearest motorway in the TEN-T core corridor, and 25 times more than passengers on the nearest TEN-T airport.

TEN-T roads and railways often create an impassable barrier for cycling in cities, towns and rural areas. This needs to be addressed systematically as a part of infrastructure requirements in the TEN-T guidelines.

Further information

ECF’s TEN-T Homepage:
ecf.com/what-we-do/ten-t-eurovelo-and-cycling

ECF’s TEN-T Position Paper:
ecf.com/ten-t_ecf_position_paper_2020

Detailed amendments:

See below.
<table>
<thead>
<tr>
<th>Article</th>
<th>Commission’s draft proposal</th>
<th>ECF proposed amendments</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (2)</td>
<td>The infrastructure of the trans-European transport network consists of the infrastructure for railway transport, inland waterway transport, maritime transport, road transport, air transport, multimodal transport and transport in urban nodes, as laid down in the relevant sections of Chapters II, III and IV.</td>
<td>The infrastructure of the trans-European transport network consists of the infrastructure for railway transport, inland waterway transport, maritime transport, road transport, air transport, cycling transport, multimodal transport and transport in urban nodes, as laid down in the relevant sections of Chapters II, III and IV.</td>
<td>Recognising the need to integrate (at least elements of) cycling infrastructure in the TEN-T.</td>
</tr>
<tr>
<td>3.</td>
<td>For the purpose of this Regulation, the following definitions apply: […] (ak) ‘socio-economic cost-benefit analysis’ means a quantified ex-ante evaluation, based on a recognised methodology, of the value of a project, taking into account all the relevant social, economic, climate-related and environmental benefits and costs. The analysis of climate-related and environmental costs and benefits shall be based on the environmental impact assessment carried out pursuant to Directive 2011/92/EU of the European Parliament and of the Council;</td>
<td>For the purpose of this Regulation, the following definitions apply: […] (ak) ‘socio-economic cost-benefit analysis’ means a quantified ex-ante evaluation, based on a recognised methodology, of the value of a project, taking into account all the relevant social, economic, climate-related and environmental benefits, including health benefits of active modes, and costs. The analysis of climate-related and environmental costs and benefits shall be based on the environmental impact assessment carried out pursuant to Directive 2011/92/EU of the European Parliament and of the Council;</td>
<td>Including health impact of active modes is stipulated by the Staff Working Document for the Sustainable and Smart Mobility Strategy, point 770: “A systematic inclusion of the carbon impact and health benefits of active mobility in infrastructure and transport projects and policies is needed. The respective WHO Health Economic Assessment Tool (HEAT) elaborated with UNECE should be applied at local, national and EU levels.” As a prerequisite for health impact assessment, the impact of the project on number of trips done by active modes needs to be analysed.</td>
</tr>
<tr>
<td>4 (2)</td>
<td>The trans-European transport network shall strengthen the social, economic and territorial cohesion of the Union and contribute to the creation of a single European transport area which is sustainable, efficient and resilient and which increases the benefits for its users and supports inclusive growth. It shall demonstrate European added value by contributing to the objectives laid down in the following four categories: (a) sustainability through: (i) promotion of zero-emission mobility in line with the relevant Union CO2 reduction targets;</td>
<td>The trans-European transport network shall strengthen the social, economic and territorial cohesion of the Union and contribute to the creation of a single European transport area which is sustainable, efficient and resilient and which increases the benefits for its users and supports inclusive growth. It shall demonstrate European added value by contributing to the objectives laid down in the following four categories: (a) sustainability through: (i) promotion of zero-emission mobility, including active modes, in line with the relevant Union CO2 reduction targets;</td>
<td>Active modes are the lowest hanging fruit for zero-emission transport. Unfortunately, they are often neglected in policy making, funding, planning and design of TEN-T projects.</td>
</tr>
<tr>
<td>5 (1)</td>
<td>The trans-European transport network shall be planned, developed and operated in a resource-efficient way, complying with the applicable Union and national environmental requirements, through: […] (f) the taking into account of possible synergies with other networks, in particular the trans-European energy or telecommunication networks;</td>
<td>The trans-European transport network shall be planned, developed and operated in a resource-efficient way, complying with the applicable Union and national environmental requirements, through: […] (f) the taking into account of possible synergies with other networks, in particular the trans-European energy or telecommunication networks, or EuroVelo, the European cycle route network;</td>
<td>Reflecting the content of Recital 9 in the content of the guidelines. ECF strongly advocates for the inclusion of EuroVelo, the European cycle route network, alongside the networks of the other modes currently in the TEN-T (see proposed Article 40). A backup option would be to move the current reference to EuroVelo from the recitals into the operational part of the regulation and this appears to be a suitable point to do that.</td>
</tr>
<tr>
<td>9 (1)</td>
<td>The Union may cooperate with neighbouring countries in order to</td>
<td>The Union may cooperate with neighbouring countries in order to</td>
<td>Active modes play an important role in EU’s neighbouring</td>
</tr>
<tr>
<td>Chapter II. General Provisions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section 1. Railway transport infrastructure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter II. General Provisions

<table>
<thead>
<tr>
<th>12 (1)</th>
<th>In the development of the core, the extended core and the comprehensive network, general priority shall be given to measures that are necessary for: [...] (h) deploying zero and low carbon infrastructure for transport.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 (2)</td>
<td>In order to complement the measures set out in paragraph 1, particular consideration shall be given to measures that are necessary for: (a) contributing to transport emission reduction and increased energy security by promoting the use of zero-emission vehicles and vessels and renewable and low-carbon fuels, through the deployment of corresponding alternative fuels infrastructure; (b) contributing to transport emission reduction and increased energy security by promoting the use of zero-emission vehicles and vessels and renewable and low-carbon fuels, through the deployment of corresponding active modes infrastructure and alternative fuels infrastructure;</td>
</tr>
<tr>
<td>(new point)</td>
<td>(i) removing barriers for active modes created by existing trans-European transport infrastructure.</td>
</tr>
</tbody>
</table>

Chapter III. Specific Provisions

Section 1. Railway transport infrastructure

<table>
<thead>
<tr>
<th>15 (2)</th>
<th>Member States shall ensure that the railway infrastructure of the comprehensive network, including connections referred to in Article 14(1), point (d), by 31 December 2050: [...] (f) does not constitute a barrier to active modes; at least twice as many safe and comfortable crossings across the line tracks shall be provided for cycling as for motorised vehicles;</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 (2)</td>
<td>Member States shall ensure that the railway infrastructure of the comprehensive network, including connections referred to in Article 14(1), point (d), by 31 December 2050: [...] (f) does not constitute a barrier to active modes; at least twice as many safe and comfortable crossings across the line tracks shall be provided for cycling as for motorised vehicles;</td>
</tr>
<tr>
<td>15 (2)</td>
<td>Many of current TEN-T rail lines form a prohibitive barrier to cycling, forcing cyclists to take long detours or to cycle on unsafe roads, because road bridges over or road tunnels under the rail lines have not been equipped with cycling infrastructure. As detours are affecting active modes much more than motorised vehicles, the density of crossings for cyclists should be significantly higher than for cars.</td>
</tr>
<tr>
<td>(new point)</td>
<td>(h) enables passenger trips to be combined with active modes, including by providing secure bicycle parking in adequate numbers at the stations and cycle connections with nearby settlements at least in the area of 4 km around the station;</td>
</tr>
<tr>
<td>(new point)</td>
<td>(i) enables effective realisation of the passenger rights established in Article 6 of Regulation (EU) 2021/782. All the railway station's platforms must be accessible with ramps or lifts allowing transport of bicycles.</td>
</tr>
<tr>
<td>19.</td>
<td>In the promotion of projects of common interest related to railway infrastructure, and in addition to the general priorities set out in Articles 12 and 13, attention shall be given to the following: […] (b) improving the safety of level crossings;</td>
</tr>
<tr>
<td></td>
<td>In the promotion of projects of common interest related to railway infrastructure, and in addition to the general priorities set out in Articles 12 and 13, attention shall be given to the following: […] (b) improving the safety of level crossings and providing additional crossings for active modes;</td>
</tr>
<tr>
<td></td>
<td>(c) connecting railway transport infrastructure with active modes infrastructure and, where appropriate, with inland waterway port infrastructure;</td>
</tr>
<tr>
<td></td>
<td>(f) when building or upgrading railway infrastructure, ensure the continuity and accessibility of pedestrian and cycling paths in order to promote the active modes of transport;</td>
</tr>
<tr>
<td></td>
<td>(f) when building or upgrading railway infrastructure, ensure the continuity and accessibility of pedestrian and cycling connections and seek synergies for creating new pedestrian and cycling connections in order to promote the active modes of transport;</td>
</tr>
</tbody>
</table>
ECF amendments to the Commission’s proposal for revised TEN-T guidelines

<table>
<thead>
<tr>
<th>Section 2. Inland Waterways Transport Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>21. (new point) 3. Member States shall ensure that rivers and canals do not constitute barriers to active modes; at least twice as many safe and comfortable crossings across the inland waterway shall be provided for cycling as for motorised vehicles.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 3. Maritime Transport Infrastructure and the European Maritime Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 (2) Member States shall ensure that, by 31 December 2050: (a) maritime ports of the comprehensive network will be connected with the rail and road infrastructure and, where possible, inland waterways, except where specific geographic or significant physical constraints prevent such connection;</td>
</tr>
</tbody>
</table>

| TEN-T harbours provide major concentration of workplaces and often include also passenger ferry terminals. Therefore, they should also be accessible by safe cycle routes. |

- TEN-T projects should not only strive to not make things worse, but actually improve conditions for active modes – good practices show that it is possible.

- Rail lines can be an attractive, direct, and safe corridor for a cycle route. Often there is a synergy with service roads built alongside railway anyway. Cycle highway projects alongside railways (including high-speed line) demonstrated a benefit to cost ratio of up to 14:1. The investment is most efficient if integrated from the start in railway project. The weak point is often the bridges, and it is a critical one to address, because it is expensive and complicated to add cycle tracks as an afterthought.

- In the promotion of projects of common interest related to inland waterway infrastructures, and in addition to the general priorities set out in Articles 12 and 13, attention shall be given to the following: (f) providing active modes infrastructure alongside waterways.

- Inland waterways can be an attractive, direct, and safe corridor for a cycle route. Cycle routes along major river are popular both among commuters and tourists. Often there is a synergy with service roads built on flood embankments or towing paths along the waterway.

- (h) integrating cycling infrastructure alongside rail lines and within civil engineering structures such as bridges or tunnels.
<table>
<thead>
<tr>
<th>SECTION 4. ROAD TRANSPORT INFRASTRUCTURE</th>
</tr>
</thead>
</table>

28 (1)
Road transport infrastructure shall comprise, in particular:
- (a) high-quality roads including: [...] (xi) pedestrian and cycle tracks, bridges, tunnels and other active modes infrastructure;
- (g) alternative routes for active modes in case they are substitutes for integrating active modes infrastructure as parts of high-quality roads as set out in point (a)(xi).

To make it possible to build, as a part of a TEN-T project, for example a cycle track 100 m away from the carriageway instead of directly next to it (where it might be much more expensive and less effective, because of difficult terrain, existing buildings etc.)

29 (2)
Member States shall ensure that by 31 December 2050 the road infrastructure of the comprehensive network meets the following requirements:
- (a) the road is specially designed, built or upgraded for motor traffic and:
 - (i) provides, except at special points or temporarily, separate carriageways for the two directions of traffic, separated from each other by a dividing strip not intended for traffic or, exceptionally, by other means;
 - (ii) does not cross at grade with any road, railway or tramway track, bicycle path or footpath; and
 - (iii) does not serve properties bordering on it.

To make it possible to build, as a part of a TEN-T project, for example a cycle track 100 m away from the carriageway instead of directly next to it (where it might be much more expensive and less effective, because of difficult terrain, existing buildings etc.)

new point
(e) the road has a parallel cycle track or an alternative route for active modes,

Many of the TEN-T roads follow historical traces, connecting towns and villages. The carriageway is shared by motor vehicles and active modes. The upgrades to the standard required by article 28.2 (a) cannot be done at the expense of active modes, therefore an alternative route needs to be provided. On major roads, such as those belonging to the TEN-T network, separation of active modes is critical for safety.

new point
(f) the road does not constitute a barrier to active modes; at least twice as many safe and comfortable crossings across the road shall be provided for cycling as for motorised vehicles; in and next to built-up areas the distance between crossings for active modes should not exceed 400 m.

Currently, the TEN-T infrastructure is already a barrier for active modes, and the new provisions of 28.2 (a) will greatly increase the barrier effect. They need to be balanced by a requirement to provide safe and comfortable crossings.
Different standards recommend mesh density for cycle networks between 250 and 400 m. With distances between crossings exceeding 400 m in built-up areas, the road will have a barrier effect for active modes.

29 (5) (new paragraph)

At the request of a Member State, in duly justified cases, exemptions from the requirements set out in points (e) or (f) of paragraph 2 may be granted by the Commission, and as long as an appropriate level of safety is ensured. The assessment of the request by the Commission shall take account of the socio-economic cost-benefits of the investments needed to comply with the requirements set out in points (e) or (f) of paragraph 2.

Exception procedure from the above “active modes” requirements, similar to the one defined in article 29 (4).

31. In the promotion of projects of common interest related to road infrastructure, and in addition to the general priorities set out in Articles 12 and 13, attention shall be given to the following: [...] (b) mitigation of congestion on existing roads, in particular through intelligent traffic management, including dynamic congestion charges or tolls varied based on the time of day, week or season;

In the promotion of projects of common interest related to road infrastructure, and in addition to the general priorities set out in Articles 12 and 13, attention shall be given to the following: [...] (b) mitigation of congestion on existing roads, in particular through cycle highways and intelligent traffic management, including dynamic congestion charges or tolls varied based on the time of day, week or season;

Cycle highways are a low-hanging fruit for reducing congestion. Congestion is usually observed in densely populated areas, where TEN-T roads carry a significant number of local journeys (in some cases as much as 98%) – a part of these journeys can be replaced with cycle trips. A study undertaken by Goudappel Coffeng concluded that building 675 km of cycle highways would reduce the time spent in congestion in the Netherlands by up to 13.2 million hours per year. Similarly, a traffic demand study in Germany’s Ruhr area estimates that the 100-km cycle highway RS1 can remove some 52,000 motorised vehicle journeys per day.

(d) when building or upgrading road infrastructure, ensure the continuity and accessibility of pedestrian and cycling paths in order to promote the active modes of transport.

(d) when building or upgrading road infrastructure, ensure the continuity and accessibility of pedestrian and cycling connections and seek synergies for creating new pedestrian and cycling connections in order to promote the active modes of transport;

While there have been cases of TEN-T projects uprooting existing cycle paths, this is only the tip of the iceberg of TEN-T projects not taking into account active modes. For example, it does not cover, a typical situation of a TEN-T project cutting local roads (on which separate cycle paths were not necessary) and funnelling all the traffic into a busy road, creating a dangerous barrier for pedestrians and cyclists.

TEN-T projects should not only strive to not make things worse, but actually improve conditions for active modes – good practices show that it is possible.

(e) integrating cycling infrastructure within civil engineering structures such as bridges and tunnels.

Reflecting the content of recital 10 in the guidelines. If cycling infrastructure is not integrated from the very beginning in bridge and tunnel projects, it is very difficult and expensive to add later as an afterthought.

SECTION 5. AIR TRANSPORT INFRASTRUCTURE
33 (1) Member States shall ensure that: […] (b) the airports of the comprehensive network with a total annual passenger traffic volume of more than four million passengers are connected with the long-distance railway network, including with the high-speed rail network, and road transport infrastructure of the trans-European transport network by 31 December 2050, except where specific geographic or significant physical constraints prevent such connections; Member States shall ensure that: […] (b) the airports of the comprehensive network with a total annual passenger traffic volume of more than four million passengers are connected with the long-distance railway network, including with the high-speed rail network, and road transport infrastructure of the trans-European transport network by 31 December 2050, except where specific geographic or significant physical constraints prevent such connections; (b') the airports of the comprehensive network are connected with the active modes infrastructure by 31 December 2030.

Connecting with the active modes infrastructure is a low hanging fruit for improving sustainability and connectivity of airports at the same time. Cycle tracks to the airport can be used both by passengers and people working in businesses located around airport. Major airports (for example Amsterdam Schiphol, Brussels Zaventem, Frankfurt) already invest in high quality cycle highways, but also smaller airports (well below the 4 M pax threshold, for example Bari and Brindisi in Italy) find it useful to be bike-friendly.

SECTION 7. URBAN NODES

40 When developing the trans-European transport network in urban nodes, in order to ensure the effective functioning of the entire network without bottlenecks, Member States shall ensure: […] (c) by 31 December 2030: […] When developing the trans-European transport network in urban nodes, in order to ensure the effective functioning of the entire network without bottlenecks, Member States shall ensure: […] (c) by 31 December 2030: […]

(v) 100% of trip origins and destinations within the urban node to be safely reachable by walking and cycling;

To ensure the effective functioning of the network, we need more specific requirement for urban nodes infrastructure, not only adopting SUMPs. The basic requirement for reducing congestion and decarbonising the TEN-T network is to provide safe alternative for local trips currently done by car on TEN-T roads. Everyone who wants to walk or cycle to work, school or a TEN-T rail station, should be able to do it without being afraid of their life. The implementation – whether to build segregated cycle tracks or calm the motorised traffic a safe speed – is up to the national and local authorities.

(vi) for sections of TEN-T road and rail infrastructure where commuting constitutes more than 30% of traffic: parallel uninterrupted high-quality cycle highways.

Cycle highways are a low-hanging fruit for reducing congestion, as discussed with regards to article 31. They need however to expand beyond the city borders (and possibly also beyond the territorial scope of a SUMP) to address the challenge of commuting from suburbs and satellite cities.

(new point) (e) compliance with the adopted sustainable urban mobility plans.

The EC proposal obliges cities to take “long-distance trans-European transport flows into consideration” in their SUMPs, but there is no symmetrical obligation for the national stakeholders to take into consideration the needs of local transport. The best plans will be worthless if major road/rail/other projects will be allowed to sabotage, for example, planned cycle routes. The adopted SUMPs should represent a common ground and be carried out in cooperation between local and national stakeholders (as stipulated in Annex V point 5).

SECTION 8. CYCLING TRANSPORT INFRASTRUCTURE (new)
| Article 40a. Infrastructure components | The TEN-T is currently a network of European roads, railways, inland waterways, ports and airports but not cycle routes. Adding a European cycle route network alongside the other modes would not only significantly contribute towards the EU meeting its ambitious climate targets but would also symbolise that, after nearly three decades, the EU's flagship transport policy is being updated to reflect the new approaches needed to address the significant mobility challenges that society is now facing.

EuroVelo, the European cycle route network, was launched in 1997 and now covers 90,000 km of which 60% are ready to cycle. Dedicated signing can already be found in 24 different countries. It forms a backbone to national and regional cycle route networks and can connect urban and rural areas for mobility and tourism.

It is vitally important the network is coordinated on the national and European level in order to ensure its continuing development and the TEN-T is the EU policy area best placed to provide that support. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Article 40b. Infrastructure requirements</td>
<td>Principles of Safety, Directness, Coherence, Attractiveness, and Comfort were originally defined by the Dutch organization CROW, but since then have been widely adopted in various national and regional standards and guidelines. On the EU level, they are referenced in the DG MOVE Guidance for Cycling Projects in the EU.</td>
</tr>
<tr>
<td>Article 40c. Priorities for cycling infrastructure development</td>
<td>In the promotion of projects of common interest related to active modes infrastructures, and in addition to the general priorities set out in Articles 12 and 13, attention shall be given to the following: (a) improving and further building dedicated cycling infrastructure around urban nodes; (b) providing for dedicated cycle tracks in sections where cyclists currently share the carriageway with high speed, and/or high volumes of, motorised traffic; (c) improving sections of the cycle infrastructure that do not have adequate surface quality; (d) interconnection of rail infrastructure and active modes infrastructure.</td>
</tr>
</tbody>
</table>
CHAPTER IV. PROVISIONS FOR SMART AND RESILIENT TRANSPORT

44. In order for the trans-European transport network to keep up with innovative technological developments and deployments, Member States shall aim in particular to:

(a) support and promote the decarbonisation of transport through transition to zero- and low-emission vehicles, vessels and aircraft and other innovative and sustainable transport and network technologies such as hyperloop;

In order for the trans-European transport network to keep up with innovative technological developments and deployments, Member States shall aim in particular to:

(a) support and promote the decarbonisation of transport through transition to zero- and low-emission modes, vehicles, vessels and aircraft and other innovative and sustainable transport and network technologies such as hyperloop;

Shifting to zero- and low-emission modes, such as active modes is the most efficient way to decarbonise transport.

CHAPTER V. IMPLEMENTATION OF THE INSTRUMENTS OF EUROPEAN TRANSPORT CORRIDORS AND HORIZONTAL PRIORITIES

52 (3) With the agreement of the Member States concerned, the European Coordinator may set up and chair corridor working groups which focus on: […]

With the agreement of the Member States concerned, the European Coordinator may set up and chair corridor working groups which focus on: […]

(t bis) removing or mitigating barriers for active modes created by existing TEN-T infrastructure,

Because of the past neglect of the issue, many of current TEN-T roads, rail lines or inland waterways form a prohibitive barrier for walking or cycling, for example by lacking crossings or access, or by making active modes unsafe. Addressing those barriers might require international cooperation, for example to retrofit cycle track into a cross-border bridge or agree on an alternative border crossing for active modes. The group could also facilitate the exchange of best practices and innovative technologies in the area of integrating active modes infrastructure.

ANNEX V – SUSTAINABLE URBAN MOBILITY PLANNING REQUIREMENTS FOR URBAN NODES

1a (new point) -

Scope: The territorial extent of a SUMP shall include at least the whole area around the urban node where commuting trips to and from the urban node constitute more than 30% of traffic on TEN-T roads or railroads. It should also take into account the potential of e-bikes in replacing car trips up to at least 20 km, establishing a cycle highway network on the agglomeration or regional level.

SUMP’s covering only the area within the municipal border of a city in the centre of the urban node will not be effective in addressing the problem of congestion on and decarbonisation of the TEN-T network. Within the city borders, most of trips is usually already carried out by walking, cycling and public transport; the challenge is to address commuting from suburbs and satellite cities.

4a (new point) -

Safety: A SUMP shall plan for 100% of trip origins and destinations within its area to be safely reachable both by walking and cycling. Wherever separation of active modes from motorised traffic is not feasible or justified, traffic speeds not exceeding 30 km/h shall be ensured. Circulation plans shall eliminate through traffic from the centre of the city and other sensitive areas; walking and cycling shall offer a more direct route than driving.

Everyone who wants to walk or cycle to work, school or a TEN-T rail station, should be able to do it without being afraid of their life. 30 km/h is the speed of motorised vehicles considered to bring the risk to an acceptable level – it can be treated either as baseline speed limit for an urban area, or a fallback measure in case separation of active modes is not possible.