Why is important for cyclists?

The Road Infrastructure Safety Management directive (2008/ 96/ EC, also known as the RISM directive) currently defines procedures that were supposed to ensure safety of the trans-European road infrastructure (TEN-T) but up until now focused nearly exclusive on safety of car-occupants. As a result, many TEN-T road (re)construction projects across EU negatively affected cycling by creating new barriers or safety hazards for active mobility.

What is in the Commission’s proposal?

The European Commission’s proposal, part of the 3rd Mobility Package published on May 17th, includes several important improvements to the directive:

- New article 6b states that the needs of cyclists (as well as pedestrians and motorcyclists) must be taken into account in implementation of safety procedures defined in the directive. This covers preliminary planning of new roads section (Road Safety Impact Assessment), draft and detailed design of road projects (Road Safety Audits), as well as existing roads in operation (Network-wide Road Assessment, Road Safety Inspection).
- “Provisions for cyclists” were added as one of the criteria for Road Safety Audits (Annex II) at draft design stage. Previously, a reference to cyclists was included only at the detailed design stage. This is an important addition, as the earlier the engineers start thinking about integrating cyclists’ needs in the design of a road, the better quality of infrastructure they can achieve.
- A new procedure of “Network-wide Road Assessment” (Annex III) includes collecting data about bicycle facilities, as well as existing and potential cycle traffic along the roads falling under the scope of the directive. This data can form a basis for more evidence-based integration of cycling in EU-level policies.
The construction of M5 motorway in Hungary (part of the TEN-Toore network) interrupted a popular existing cycle path connecting towns of Mórahalom and Domazék with the city of Szeged. The cycle path was used both for commuting and as a part of EuroVelo route 13, but the interchange of the M5 and national road 55 does not include any provisions for cyclists.

Good practice: cycle highway F15 integrated in the design of the extension of the A15 motorway in Netherlands (part of the Rhine–Alpine TEN-Toorridor).
Extension of scope

- The scope of the Directive has been proposed to be extended from Trans-European Network only to all motorways, primary roads and EU-funded rural roads. The extension of the scope is in line with the recommendations of EU Cycling Strategy, but it also means that we need to bring cycling and pedestrian infrastructure needs more fully into the directive.

What ECF proposes to improve?

ECF supports the general direction of Commission’s proposal. However, we suggest two more critical pieces for Member States and European Parliament to transform these positive, but somehow abstract rules into clear legislation:

- More specific EU level guidelines on how to take the needs of cyclists into account are needed, as many existing TEN-T projects clearly demonstrate lack of necessary knowledge among many Member States. The guidelines should include minimum quality criteria for cycling infrastructure, obligatory for all roads falling under the scope of the Directive.
- Including cycling infrastructure in training and certification of road safety auditors. In many Member States, practical implementation of the RISM Directive was focused on preventing accidents on motorways and similar high-speed roads. The extension of the scope of the Directive should be accompanied by significant changes in training and certification of road safety auditors.
Cycle highway RijnWaalpad tunnel under A15 motorway in the Netherlands is an example of a safe and comfortable crossing under a TEN-T road. Monitoring the volumes of cycle traffic across existing roads and estimating the potential bicycle flows in preparation of road (re)constructions project can form a basis for an evidence-based policy.

There are also several smaller changes ECF would like to include:

- **Network-wide Road Assessment should include data not only about cycle traffic along the road, but also crossing it.** In cases of e.g. bypasses number of cyclists moving across the assessed road might be much higher than along. For example, there are 17,300 cyclists/day crossing a 1.5 km long section of Antwerp ring road (A1/ A12 motorway, TEN-T core network, North Sea-Baltic and North Sea-Mediterranean corridors) between Borgerhout and Berchem interchanges.

- If there are no dedicated bicycle facilities along the assessed road, it would be useful to include an information on whether there is an alternative route for cyclists (e.g. lower class parallel roads).

- **The estimates of bicycle flows determined from adjacent land use attributes should be used in the impact assessment and audit of new road projects, not only in assessment of existing roads.** It is better to identify the need for cycling infrastructure before the road is built, not after.

Proposal of specific amendments for the Directive and comparison with the EC proposal is presented on the following pages.
Current wording within the legislation

Commission proposal – in red *(changes comparing to current legislation wording in red)*

ECF proposal – in blue *(changes comparing to Commission proposal in blue)*

<table>
<thead>
<tr>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>The addition proposed by ECF deals with the fact that many Member States lack the necessary knowledge on how to take into account the needs of pedestrians and cyclists. To ensure safety of users, the guidelines/requirements should cover two main aspects:</td>
</tr>
<tr>
<td>- Recommended degree of separation between pedestrians, cyclists and motor vehicles</td>
</tr>
<tr>
<td>- Minimum/recommended design parameters for dedicated facilities, including e.g. visibility splays on crossings, clearance, visibility of obstacles etc.</td>
</tr>
</tbody>
</table>

Directive 2008/96/EC on road infrastructure safety management

<table>
<thead>
<tr>
<th>-</th>
<th>Article 6b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection of vulnerable road users</td>
<td>Protection of vulnerable road users</td>
</tr>
<tr>
<td>Member States shall ensure that the needs of vulnerable road users are taken into account in the implementation of the procedures set out in Articles 3 to 6.</td>
<td>Member States shall ensure that the needs of vulnerable road users are taken into account in the implementation of the procedures set out in Articles 3 to 6.</td>
</tr>
<tr>
<td>2. The Commission shall develop quality requirements for pedestrian and cycling infrastructure.</td>
<td></td>
</tr>
</tbody>
</table>

ANNEX I – ELEMENTS OF ROAD SAFETY IMPACT ASSESSMENT FOR INFRASTRUCTURE PROJECTS

2. Elements to be taken into account:
(a) fatalities and accidents, reduction targets against ‘do nothing’ scenario;
(b) route choice and traffic patterns;
(c) possible effects on the existing networks (e.g. exits, intersections, level crossings);
(d) road users, including vulnerable users (e.g. pedestrians, cyclists, motorcyclists);
(e) traffic (e.g. traffic volume, traffic categorisation by type);
(f) seasonal and climatic conditions;
(g) presence of a sufficient number of safe parking areas;
(h) seismic activity.

2. Elements to be taken into account:
(a) fatalities and accidents, reduction targets against ‘do nothing’ scenario;
(b) route choice and traffic patterns;
(c) possible effects on the existing networks (e.g. exits, intersections, level crossings);
(d) road users, including vulnerable users (e.g. pedestrians, cyclists, motorcyclists);
(e) traffic (e.g. traffic volume, traffic categorisation by type);
(f) seasonal and climatic conditions;
(g) presence of a sufficient number of safe parking areas;
(h) seismic activity.

2. Elements to be taken into account:
(a) fatalities and accidents, reduction targets against ‘do nothing’ scenario;
(b) route choice and traffic patterns;
(c) possible effects on the existing networks (e.g. exits, intersections, level crossings);
(d) road users, including vulnerable users (e.g. pedestrians, cyclists, motorcyclists);
(e) traffic (e.g. traffic volume, traffic categorisation by type), including estimated pedestrian and bicycle flows determined from adjacent land use attributes;
(f) seasonal and climatic conditions;
(g) presence of a sufficient number of safe parking areas;
(h) seismic activity.

Pedestrian and bicycle flows should not only be estimated as a part of the network-wide road assessments (annex III), when the road is already in operation, but also in the early stages of designing a new road (e.g. when considering different variants).
1. Criteria at the draft design stage:
(a) geographical location (e.g. exposure to landslides, flooding, avalanches), seasonal and climatic conditions and seismic activity;
(b) types of and distance between junctions;
(c) number and type of lanes;
(d) kinds of traffic admissible to the new road;
(e) functionality of the road in the network;
(f) meteorological conditions;
(g) driving speeds;
(h) cross-sections (e.g. width of carriageway, cycle tracks, foot paths);
(i) horizontal and vertical alignments;
(j) visibility;
(k) junctions layout;
(l) public transport and infrastructures;
(m) road/rail level crossings.

(a-m) +

(n) provisions for vulnerable road users:
 i) provisions for pedestrians,
 ii) provisions for cyclists,
 iii) provisions for powered two-wheelers

ANNEX II – ELEMENTS OF ROAD SAFETY AUDITS

Instead of general “provisions” we address directly two main issues: cycle and pedestrian traffic ALONG (n) and ACROSS(o) the road. (p) can be specified further by motorcyclists’ organisation. Note that this is draft design, so we don’t go into quality of solutions yet, just whether the project includes necessary provisions or not. We also propose to analyse at the draft design stage provisions on roads on the area that can be affected by the infrastructure project (q).

Construction of a new or upgrade of existing road can significantly affect function or traffic volumes on other roads in the area. The designers should verify whether the affected roads are ready for the new function, and if necessary include necessary changes also on other roads.

ANNEX IIa – ELEMENTS OF ROAD SAFETY INSPECTIONS

1. Road alignment and cross-section:
 (a) visibility and sight distances;
 (b) speed limit and speed zoning;
 (c) self-explaining alignment (i.e. “readability” of the alignment by drivers);
 (d) access to adjacent property and developments;
 (e) access of emergency and service vehicles;
 (f) treatments at bridges and culverts;
 (g) roadside layout (shoulders, pavement drop-off, cut and fill slopes).

2. Intersections and interchanges:
 (a) appropriateness of intersection/interchange type;
 (b) geometry of intersection/interchange layout;
 (c) visibility and readability (perception) of intersections;
 (d) visibility at the intersection;
 (e) layout of auxiliary lanes at intersections;
 (f) intersection traffic control (e.g. stop controlled, traffic signals etc.);
 (g) existence of pedestrian crossings.

3. Provisions for vulnerable road users:
 (a) provisions for pedestrians;
 (b) provisions for cyclists;
 (c) provisions for powered two-wheelers.

1. Road alignment and cross-section:
 (a) visibility and sight distances;
 (b) speed limit and speed zoning;
 (c) self-explaining alignment (i.e. “readability” of the alignment by drivers);
 (d) access to adjacent property and developments;
 (e) access of emergency and service vehicles;
 (f) treatments at bridges and culverts;
 (g) roadside layout (shoulders, pavement drop-off, cut and fill slopes).

2. Intersections and interchanges:
 (a) appropriateness of intersection/interchange type;
 (b) geometry of intersection/interchange layout;
 (c) visibility and readability (perception) of intersections;
 (d) visibility at the intersection;
 (e) layout of auxiliary lanes at intersections;
 (f) intersection traffic control (e.g. stop controlled, traffic signals etc.);
 (g) existence of pedestrian crossings.

3. Provisions for vulnerable road users:
 (a) provisions for pedestrians;
 (b) provisions for cyclists;
 (c) provisions for powered two-wheelers.

Minor corrections to reflect the requirements of the new article 6b and change the safety perspective from driver only to all road users. Roads should be readable also for cyclists and pedestrians, roadside obstacles can be a safety hazard also for cyclists etc.
4. Lighting, signs and markings:
(a) coherent road signs, not obscuring visibility;
(b) readability of road signs (position, size, colour);
(c) sign posts;
(d) coherent road markings and delineation;
(e) readability of road markings (position, dimensions and retroreflectivity under dry and wet conditions);
(f) appropriate contrast of road markings;
(g) lighting of lit roads and intersections;
(h) appropriate roadside equipment.

5. Traffic signals:
(a) operation;
(b) visibility.

6. Objects, clear zones and road restraint systems:
(a) roadside environment including vegetation;
(b) roadside hazards and distance from carriageway or cycle path edge;
(c) user-friendly adaptation of road restraint systems (central reservations and crash barriers to prevent hazards to vulnerable users);
(d) end treatments of crash barriers;
(e) appropriate road restraint systems at bridges and culverts.
(f) fences (in roads with restricted access).

7. Pavement:
(a) pavement defects;
(b) skid resistance;
(c) loose material/ gravel/ stones;
(d) ponding, water drainage.

8. Other issues:
(a) provision of safe parking areas and rest areas;
(b) provision for heavy vehicles;
(c) headlight glare;
(d) roadworks;
(e) unsafe roadside activities;
(f) appropriate information in ITS equipment (e.g. variable message signs);
(g) wildlife and animals;
(h) school zone warnings (if applicable).
<table>
<thead>
<tr>
<th>2. Traffic volumes:</th>
<th>2. Traffic volumes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) traffic volumes;</td>
<td>(a) traffic volumes;</td>
</tr>
<tr>
<td>(b) observed motorcycle volumes;</td>
<td>(b) observed motorcycle volumes;</td>
</tr>
<tr>
<td>(c) observed pedestrian volumes on both sides,</td>
<td>(c) observed pedestrian volumes on both sides,</td>
</tr>
<tr>
<td>noting “along” or “crossing”;</td>
<td>noting “along” or “crossing”;</td>
</tr>
<tr>
<td>(d) observed bicycle volumes;</td>
<td>(d) observed bicycle volumes on both sides,</td>
</tr>
<tr>
<td>(e) observed heavy vehicle volumes;</td>
<td>noting “along” or “crossing”;</td>
</tr>
<tr>
<td>(f) estimated pedestrian flows determined from</td>
<td>(e) observed heavy vehicle volumes;</td>
</tr>
<tr>
<td>adjacent land use attributes;</td>
<td>(f) estimated pedestrian flows determined from</td>
</tr>
<tr>
<td>(g) estimated bicycle flows determined from</td>
<td>adjacent land use attributes;</td>
</tr>
<tr>
<td>adjacent land use attributes.</td>
<td>(g) estimated bicycle flows determined from</td>
</tr>
</tbody>
</table>

“on both sides” – because cyclists can also use	“on both sides” – because cyclists can also use
cycle paths (or service roads etc.) on both sides	cycle paths (or service roads etc.) on both sides
of the main carriageways (often in both	of the main carriageways (often in both
directions each, which necessitates adjustments	directions each, which necessitates adjustments
in measurements methodology).	in measurements methodology).

“crossing”: in cases of e.g. bypasses number of | “crossing”: in cases of e.g. bypasses number of |
cyclists moving across the assessed road might	cyclists moving across the assessed road might
be much higher than along. For example, there	be much higher than along. For example, there
are 17300 cyclists/day crossing a 1,5 km long	are 17300 cyclists/day crossing a 1,5 km long
section of Antwerp ring road (A1/A12 motorway,	section of Antwerp ring road (A1/A12 motorway,
TEN-T core network, North Sea–Baltic and North	TEN-T core network, North Sea–Baltic and North
Sea–Mediterranean corridors) between	Sea–Mediterranean corridors) between
Borgerhout and Berchem interchanges.	Borgerhout and Berchem interchanges.

<table>
<thead>
<tr>
<th>9. Vulnerable road users’ facilities:</th>
<th>9. Vulnerable road users’ facilities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) pedestrian and cycling crossings (surface</td>
<td>(a) pedestrian and cycling crossings (surface</td>
</tr>
<tr>
<td>crossings and grade separation);</td>
<td>crossings and grade separation);</td>
</tr>
<tr>
<td>(b) pedestrian fencing;</td>
<td>(b) pedestrian fencing;</td>
</tr>
<tr>
<td>(c) existence of sidewalk or separated facility;</td>
<td>(c) existence of sidewalk or separated facility;</td>
</tr>
<tr>
<td>(d) bicycle facilities;</td>
<td>(d) bicycle facilities</td>
</tr>
<tr>
<td>(e) quality of pedestrian crossing related to</td>
<td>(cycle lanes, cycle paths,</td>
</tr>
<tr>
<td>conspicuity and signing of the facility;</td>
<td>other);</td>
</tr>
<tr>
<td>(f) pedestrian crossing facility on entry arm of</td>
<td>(e) quality of pedestrian crossing related to</td>
</tr>
<tr>
<td>minor road joining network.</td>
<td>conspicuity and signing of the facility;</td>
</tr>
</tbody>
</table>

(a,f) – lack of adequate cycle crossings is also a | (a,f) – lack of adequate cycle crossings is also a |
safety issue	safety issue
(d) – division into 2 basic degrees of separation	(d) – division into 2 basic degrees of separation
(paint only vs physical) + other option	(paint only vs physical) + other option
(g) – in many cases safety of pedestrian and	(g) – in many cases safety of pedestrian and
cyclists is not provided by cycle/pedestrian	cyclists is not provided by cycle/pedestrian
path next to the primary road, but e.g. by a parallel	path next to the primary road, but e.g. by a parallel
local road or greenway 500 m further; determining	local road or greenway 500 m further;
whether such alternative route exists is an important	determining whether such alternative route exists
part of safety assessment.	is an important part of safety assessment.