

Typology of Cyclist Accidents

Alice Billot-Grasset

Vivian Viallon Emmanuelle Amoros Martine Hours

Ifsttar/TS2/Umrestte

Cycling safety

Cycling is promoted because **of health benefits** & for **modal shift** on utilitarian trips.

http://inhabitat.com/infographic-how-biking-to-work-can-help-you-save-money-lose-weight-and-reduce-co2/

Cycling safety

Safety is a concern for many stakeholders because of an increasing cycling modal share in many major cities.

https://phillymotu.files.wordpress.com/2013/11/bicyclec ommuting-011.png?w=630&h=630

Cycling safety

The risk to be injured is 8 times higher for cyclists than for car occupants per hour (Blaizot et al., 2012).

Cyclist-only accidents are up to 70% of all cases

but they are hard to analyze because most of **data come from police forces** (underreporting + biased on accident type)

More generally, only a few typologies of bicycle crashes exist.

Cycling accident

Objectives

Improve knowledge on cyclist accidents thanks to a typology containing:

Collisions and cyclist-only accidents;

• All type of practises (utilitarian, sport, leisure).

Objectives

By :

- collecting data through a survey;
- constructing a typology using classification;
- identifying contribution of accidents factors to accidents types;
- understanding the impact of cyclist behaviours;
- > analysing gender effects.

Available data in France

Études Détaillées d'Accident (EDA)

- About 30 cycling accidents out of 1000 EDA,
- Case studies collection

Official data from police forces (BAAC)

- Incomplete and many biases,
- 4500 cycling accidents per year in France and 150 in the Rhône department.

Rhône Trauma Registry

- 1300 cycling accidents per year in the Rhône department,
- 260 care services on this territory,
- almost exhaustive, biases on injuries severity ≥ AIS 1,
- design for collecting additional data.

Available data in France

Études Détaillées d'Accident (EDA)

- About 30 cycling accidents out of 1000 EDA,
- Case studies collection

Official data from police forces (BAAC)

- Incomplete and many biases,
- 4500 cycling accidents per year in France and 150 in the Rhône department.

Rhône Trauma Registry

- 1300 cycling accidents per year in the Rhône department,
- 260 care services on this territory,
- almost exhaustive, biases on injuries severity ≥ AIS 1,
- design for collecting additional data.

Material and methods

Postal **survey** sent to cyclists identified from the Rhône Road Trauma Registry (medical database) and injured in 2009-2011. n=**1078 respondents**

Respondents:

Older, more often women, more often cycling in urbanised area, more often involved in collisions and more often sustaining serious injuries; than non respondents.

Methods

Trade-off between automatic methods and experts' decisions:

- 35 relevant variables selected (state of art + descriptive statistic from the Registry),
- unsupervised classification (clustering to reveal data natural structure),
- ultimate decision for the total number of clusters made by expertise or SoA outcomes.

Statistical approach

Hierarchical Ascendant Classification (HAC)

Clustering individuals using a distance for binary variables, to obtain a indicative number of clusters.

Dendrogram (Jaccard ; Ward)

Partionning Around Medoids (PAM)

Clustering individuals using the same distance. As a result of a robust method we obtain a typology of 17 clusters.

Clustering (Jaccard)

13

Typology of Cyclist Accidents

Example of an accident type

N°1 - Avoidance of another road user (n = 51)

Often, a cyclist avoiding another road user (82 vs. 10%) on a dedicated bicycle facility (49 vs. 16%). Usually, there is a trajectory conflict (67 vs. 27%), while commuting (57 vs. 23%). Most of the time on a straight road between intersections.

Multiple Correspondence Analysis (MCA)

MCA (2)

Type of trip:

— · · — utilitarian

sport

..... leisure

MCA (3)

cyclist only

collision

Type of trip: — · · — utilitarian

- ----- sport
- leisure

MCA (4)

Summary

> Survey :

- rigorous methodology,
- RR=43% (1078 respondents),
- estimation of differences between respondents and nonrespondents.

> Typology of cyclists accidents :

- 17 configurations (7 on utilitarian trips, 10 sport and leisure),
- identification of accidents factors for each configuration,
- validation of the typology quality and connection between cyclist behaviours and cyclist only accidents.

Application

> Proposals for action:

- preventing parking on bike path (conf. n°1),
- improving obstacle conspicuity (conf. n°5 et 7) ,
- increasing road facilities to make them convenient for cyclist, i.e. predictable trajectory, eye-contact with other road users (conf. n°3 et 6),
- growing awarness of cyclist behavior impact among cyclistes themselves to encourage conspicuity clothing and bike devices, appropriate speed, alcool consumption (conf n°2 4 5 7).

> Proposed approach:

 pinpoint key actors to diffuse prevention (cycling school instructor, association, medias...),

Alice Billot-Grasset IFSTTAR / TS2 / UMRESTTE

billot.aliceg@gmail.com

Thanks are due to the ARVAC

Founding: InVS, Bertrand Thélot

Contribution of variables

Table 2 Significance Level of thetypology variables

P_value

1	vulue	
Crash.Opponent	1.12e-236	
Collide.Opponent	8.40e-204	Not.Expert Slip Teenager
Commuting	2.62e-194	
Senior	1.05e-168	
Sport	1.47e-153	Not see
TrajConflict	5.07e-149	Voung
Adult	3.74e-116	Dark
Collide.Object	4.13e-105	Snood
Object	7.02e-99	Specu Rad Waathar
Not.been.seen	6.22e-93	MAIS 2
Leisure	1.77e-82	No Manoeuvre
Off.Road	5.84e-78	Cycle Infra
Avoide.Opponent	1.43e-77	MAIS sun3
Week-End	3.87e-70	NAIS_Sup3 Padastrian
Tricky.Road	4.25e-70	Mon
Intersection	1.71e-65	Dublic Transport
Friends	3.89e-61	A loobol
Invisible	1.14e-55	Altuliui Maas Foil
		Iviecar all.

3.45e-53 2.60e-48 1.47e-47 8.52e-44 2.98e-42 1.05e-40 1.30e-34 3.09e-33 2.05e-31 3.11e-31 1.08e-28 4.86e-07 1.35e-04 4.56e-04 1.85e-03 2.31e-03 1.94e-02²³