

ECF gratefully acknowledges financial support from the European Commission.

Towards a Comprehensive Socioeconomic Cost-Benefit Analysis of Cycling

Existing Approaches and Challenges Holger Haubold Velo-city Global Taipei, 29 February 2016

Rue Franklin, 28 1000 Brussels, Belgium Phone: +32 2 880 92 74 Fax: +32 2 880 92 75 office@ecf.com

Benefits of a Bieyele

www.ecf.com

Why do we need numbers if we have nice pictures?

www.ecf.coi

Cost-Benefit Analysis: HEAT tool (WHO)

- estimating the value of reduced mortality resulting from specified amounts of cycling
- www.heatwalkingcycling.org

HEAT Health economic assessment too

HEAT for cycling

Q1: Single or before / after

Q2a: Cycling data type

Home 🕨 for cycling 🕨 Q2a: Cycling data type

HEAT for cycling

Pre-intervention cycling data

Q2: Enter your pre-intervention cycling data

The HEAT model requires an estimate of the average duration spent cycling in the study population in order to calculate the corresponding health benefit (based on a relative risk from a review of the epidemiological literature on the health benefits of cycling). This duration can be entered directly, if available (and this is the most direct data entry route), or calculated based on the distance, number of steps, or number of trips.

Duration (average time cycled per person)

- Distance (average distance cycled per person)
- Trips (average per person or total observed across a population)

Cost-Benefit Analysis: HEAT tool (WHO)

- Examples for use:
 - France: Report on cycling reimbursement (11/2013)
 - Austria: National Cycling Master Plan recommends to include HEAT in guidelines for CBA for transport investments

Masterplan Radfahren

Umsetzungserfolge und neue Schwerpunkte 2011 - 2015

Cost-Benefit Analysis: HEAT tool (WHO)

TURN UP THE HEAT

Recommendations to increase the use of the World Health Organization's Health Economic Assessment Tool for Cycling across Europe

Summary Report for the European Cyclists' Federation

cf.com

www.ecf.com

Cost-Benefit Calculator for Cycling Investments (Fietsberaad/Decisio, NL)

 English explanation: <u>http://herberttiemens.wordpress.com/2014/03/</u> 04/online-cost-benefit-calculator/

WEBTOOL MKBA-FIETS

Nieuwe Infrastructuur

Nulalternatief

Gemiddelde afstand per rit	m
Aantal fietsritten	per dag

Projectalternatief

Investeringen	euro
Gemiddelde afstand per rit	m
Aantal fietsritten	per dag

Cost-Benefit Calculator for Cycling Investments (Fietsberaad/Decisio, NL)

- For indivual projects
- Including a range of direct/indirect costs/benefits
- Takes also into account externalities (noise, emissions)

Costs	Direct Effects	Indirect Effects	Externalities
Initial investment	Travel time reduction cyclists	Health benefits	Emissions
Maintenance	Travel time reduction and reliability car traffic	Productivity (less job absence)	Noise
		Subsidies public transport	Road Safety
		Tax revenues from fuel taxes	
www.ecf.com			

• Example: Cycling kilometer compared to car and bus kilometers (densely populated urban area)

	Cycling replacing car	Cycling replacing bus
Network effects (congestion)	€ 0.330	€ 0.000
Work productivity	€ 0.046	€ 0.046
Life expectancy	€ 0.025	€ 0.025
Public budgets (taxes/subsidies)	€ -0.030	€ 0.387
Total indirect effects	€ 0.041	€ 0.458
Emissions	€ 0.030	€ 0.029
Noise	€ 0.010	€ 0.016
Road safety	€ -0.001	€ 0.010
Total externalities	€ 0.039	€ 0.055
Total benefits	€ 0.411	€ 0.513

UK: Evaluation of Cycling Grants

- projects in urban and rural areas
- Average cost-benefit ratio: 1:5.5
- split of benefits:
 - 61% physical fitness
 - 18% congestion relief
 - 17% journey ambiance
 - 4% accidents, absenteeism, greenhouse gases, others

Conclusions

CBA helps cycling to prove its potentialno standardised methodology yet

\rightarrow We want to work on this!

Thank you for your attention !

For more information <u>h.haubold@ecf.com</u> @ @ HolgerECF <u>www.ecf.com</u> @ <u>@ EuCyclistsFed</u> Rue Franklin, 28 1000 Brussels, Belgium Phone: +32 2 880 92 74 Fax: +32 2 880 92 75 office@ecf.com